a generalization of m-small modules
Authors
abstract
in this paper we introduce a generalization of m-small modules and discuss about the torsion theory cogenerated by this kind of modules in category . we will use the structure of the radical of a module in and get some suitable results about this class of modules. also the relation between injective hull in and this kind of modules will be investigated in this article. for a module we show that n is m-rad if and only if ; where is the m-injective hull of n. we will show that for a cohereditary module m,r[m] is closed under extension. let be a module and , the torsion theory cogenerated by is the reject of in , defined as . in this paper we study about the property of this torsion theory. we show that if and only if for every nonzero homomorphism in , . another attractive result is if and only if , for all . for a module we show that if for some , then the inclusion is m-corad and also if , then for every submodule of and m-corad inclusion , we have . finally for a pseudo projective module m we show that every with is m-rad and if moreover , then .
similar resources
A Generalization of M-Small Modules
In this paper we introduce a generalization of M-small modules and discuss about the torsion theory cogenerated by this kind of modules in category . We will use the structure of the radical of a module in and get some suitable results about this class of modules. Also the relation between injective hull in and this kind of modules will be investigated in this article. For a module we show...
full textA GENERALIZATION OF CORETRACTABLE MODULES
Let $R$ be a ring and $M$ a right $R$-module. We call $M$, coretractable relative to $overline{Z}(M)$ (for short, $overline{Z}(M)$-coretractable) provided that, for every proper submodule $N$ of $M$ containing $overline{Z}(M)$, there is a nonzero homomorphism $f:dfrac{M}{N}rightarrow M$. We investigate some conditions under which the two concepts coretractable and $overline{Z}(M)$-coretractable...
full textA generalization of $oplus$-cofinitely supplemented modules
We say that a module $M$ is a emph{cms-module} if, for every cofinite submodule $N$ of $M$, there exist submodules $K$ and $K^{'}$ of $M$ such that $K$ is a supplement of $N$, and $K$, $K^{'}$ are mutual supplements in $M$. In this article, the various properties of cms-modules are given as a generalization of $oplus$-cofinitely supplemented modules. In particular, we prove tha...
full texta generalization of strong causality
در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...
a generalization of $oplus$-cofinitely supplemented modules
we say that a module $m$ is a emph{cms-module} if, for every cofinite submodule $n$ of $m$, there exist submodules $k$ and $k^{'}$ of $m$ such that $k$ is a supplement of $n$, and $k$, $k^{'}$ are mutual supplements in $m$. in this article, the various properties of cms-modules are given as a generalization of $oplus$-cofinitely supplemented modules. in particular, we prove tha...
full textdedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولMy Resources
Save resource for easier access later
Journal title:
journal of sciences, islamic republic of iranPublisher: university of tehran
ISSN 1016-1104
volume 26
issue 2 2015
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023